SPAR - BRAMPTON (588) 9445 AIRPORT RD # Critical Items List SRMS CIL Ref#: 3153 Revision: 0 FMEA Rev: 0 BRAMPTON ONTARIO L6S4J3 System: SRMS Subsystem: ELECTRICAL SUB-SYBTEM Assembly Desc: Servo Power Amplifier Part Number(s): 51140F1177-3 51140F1177-5 Rem: Function: Motor Drive Amplifier Assembly Provides motor voltage based on demand from tachometer electronics. Commutates the motor drive voltage. Provides hardware current limiting, brake drive, direct drive functions and enables backup drive. Provides BITE circuits and BITE verification for MDA. Filter Board Assembly Fitters 28V to SPA. Fitters secondary voltages to position encoder, commutator and tachometer SCU. Provides backup relay to switch motor to backup drive Fallure Mode: Loss of or Degraded EMI protection. H/W Func. Screen Failures Criticality: Mission Phase: Orbit Cause(s): Fifter Board Assembly Motor Drive Amplifier Assembly Degraded EMI protection. Increase EMI generation. #### Failure effect on univend Item: Increased susceptibility to noise and/or increased conducted or emitted noise. SPA operation may become erratic. Any one or more BITE or BITE verification bits may be set or CPU may half. Direct drive may be lost. Worst Case: Unexpected motion. Joint runaway. Autobrakes. Redundant Paths: Autobrakes (to Safe the System). Oirect Orive (If Available). Backup Drive. ### tetention Rationale #### Design: Transformers and inductors are designed specifically for the application. These are toroid-wound and utilize a ferrite core material. Choice of wire size and of insulation materials ensure that the derating requirements of SPAR-RMS-PA.003 are met. Discrete semiconductor devices are apacified to at least the TX level of MIL-S-19500. Samples of all procured lots/date codes are subjected to destructive physical analysis (DPA) to verify the integrity of the manufacturing processes. Particle impact Noise Detection (PIND) screening is performed on microcircuits, translator and diodes that are mounted in a package with an internal cavity construction. The purpose of the test is to detect loose particles in the package, usually resulting from the assembly process. Device stress levels are denated in accordance with SPAR-RMS-PA.003 and varified by design review. Resistors and capacitors used in the design are selected from established reliability (ER) types. Life expectancy is increased by ensuring that all allowable stress levels are derated in accordance with SPAR-RMS-PA.003. All ceramic and electrolytic capacitors are routinely subjected to radiographic inspection in accordance with the requirements of MSFC-STD-355. 18Sep96 by Fung, Bill Supersedes: N/A repared: RMS/ELEC - 839 ### SPAR - BRAMPTON (\$\$\$) 9445 AIRPÓRT RO ## Critical Items List SRME CIL Ref#: 3153 Revision: 0 FMEA Rev: 0 BRAMPTON ONTARIO L6\$4J3 The SPA board is fabricated using Surface Mount Technology (SMT). This is a PWB assembly technology in which the components are soldered to the solder pads on the surface of the PWB. The significant advantage of this technology is to enable the parts on the board to be more densely packed, to reduce to overall volume and weight of the assembly. The assembly process is highly automated. The parts are mounted on the boards using a computer computer "pick and place" machine. The subsequent soldering operation is performed using a belt furnace, in which the time and temperature thermal profile that the PWB assembly is exposed to is tightly controlled and optimized to ensure proper part soldering attachment. The assembly is manufactured under documented procedures and quality controls. These controls are exercised throughout the assembly, inspection, and testing of the unit. This inspection includes workmanship, component mounting, soldering, and conformal coating to ensure that it is in accordance with the NHB 5300 standards. The SMT line used for the SPA PWB assembly has undergone a full qualification program, and assemblies produced on this line are used in other space programs. The circuit board design has been reviewed to ensure edequate conductor width and separation and to confirm appropriate dimensions of solder pads and of component hold provisions. Parts mounting methods are controlled in accordance with MSFC-STD-154A, MSFC-STD-138 and SASD 2573751. These documents require approved mounting methods, stress relief and component security. #### Test: QUALIFICATION TESTS - The SPA is subjected to the following qualification testing: VIBRATION: Each axis of the QM is subjected to Flight Acceptance Vibration Test (FAVT), Qualification Acceptance Vibration Test (QAVT), and Qualification Vibration Test (QVT) in accordance with the SPA Vibration Test Procedure (826586). The level and duration for FAVT is as per Figure 6 and Table 2 of 826586; the level and duration for QAVT is as per Figure 8 and Table of 826586; the level and duration for QAVT is as per Figure 8 and Table of 826586. At the end of the three successive random vibration test in each axis, both directions (+/-) of each of the axis is subjected to a shock pulse test as per Figure 9 of 826586. THERMALVACUUM: QM TVAC Test is in accordance with Figure 5 of the SPA TVAC Test Procedure (826586), with full Functional/Parametric Test performed at levels of +60 degrees C and -38 degrees C, and non-operating at -54 degrees C. The Qualification vacuum levels during TVAC is 1X10**-8 torr or less. The total test duration is 7 1/2 cycles. The QM SPA is subjected to a minimum of 1000 hours of life testing and 1000 power On-Off cycles. EMC: The QM is subjected to EMC Testing (tests CE01/CE03, CE07, CS01, CS02, CS06, RE02, RS02, and RS03) in accordance with the SPA EMC test Procedure (826477) based on MIL-STD-461A. UNIT FLIGHT ACCEPTANCE TESTS - The FM SPA is subjected to the following acceptance testing: VIBRATION: FM Acceptance Vibration Test (AVT) in accordance with the SPA Vibration Test Procedure (826586), with level and duration as per Figure 6 and Table 2 of 826586. THERMAL/VACUUM: FM TVAC Test is in accordance with Figure 6 of the SPA TVAC Test Procedure (\$26588), with levels of +49 degree and -25 degrees C for a duration of 1 1/2 cycles. The vacuum levels during Acceptance TVAC Test is 1X10T-5 for or less. JOINT SRU TESTS - The SPA is tested as part of the joints (ambient and vibration tests only). The ambient ATP for the Shoulder Joint, Elbow Joint, and Wrist Joint are as per ATP.2001, ATP.2003, and ATP.2005 respectively. The vibration test for the Shoulder Joint, and Elbow or Wrist Joint are as per ATP.2002, ATP.2004 and ATP.2008 respectively. Through wire function, continuity and electifical isolation tests are performed per TP.283. MECHANICAL ARM REASSEMBLY - The SPA's/Joints undergo a mechanical arm integration stage where electrical checks are performed per TP.2007. MECHANICAL ARM TESTING - The outgoing split-arm is configured on the Strongback and the Manipulator Arm Checkout is performed per ATP.1932. FLIGHT CHECKOUT: PDRS OPS Checkout (all vehicles) J&C 19987. ### Inspection: Units are manufactured under documented quality controls. These controls are exercised throughout design procurement, planning, receiving, processing, fabrication, essembly, testing and shipping of the units. Mandatory inspection points are employed at various stages of fabrication, assembly, and test. Government source inspection is invoked at various control levels. EEE parts inspection is performed as required by SPAR-RMS-PA.003. Each EEE part is qualified at the part level to the requirements of the applicable specification. All EEE parts are 100% screened and burned-in, as a minimum, as required by SPAR-RMS-PA.003, by the supplier. DPA is performed as required by PA.003 on a randomly selected 5% of parts, maximum 5 pieces, minimum 3 pieces for each lot number/date code of parts received. All cavity devices are subjected to 100% PIND. Write is produced to specification MIL-W-22759 or MIL-W-81381 and inspected and tested to NASA JSCM8080 Standard Number 96A. Receiving inspection verifies that all parts received are as identified in the procurement documents, that no physical damage has occurred to parts during shipment, that the receiving documents provide adequate traceability information and screening data classify identifies acceptable parts. Parts are inspected throughout manufacture and assembly as appropriate to the manufacturing stage completed. These inspections include: Printed circuit board inspection for track separation, damage and adequacy of plated through holes, component mounting inspection for correct soldering, wire looping, strapping, etc. Operators and inspectors are trained and certified to NASA NHB 5300.4(3A-1) Standard. Conformal coating inspection for adequate processing is performed using ultraviolet light techniques. P.C. Scard installation inspection includes checks for correct board installation, alignment of boards, proper connector contact making, wire routing, strapping of wires etc. Post P.C. Board installation inspection includes cleanliness and workmanship (Span/government rep. mandatory inspection point). ## SPAR - BRAMPTON (SSS) 9445 AIRPORT RD # Critical Items List SRMS CIL Ref#: 3153 Revision: 0 FMEA Rev: 0 BRAMPTON DITARIO L684J3 Unit Pre-Acceptance Test inspection, which includes an audit of lower fier inspection completion, as built configuration verification to as design etc (mandatory Inspection point). A una Test Readiness Review (TRR) which includes verification of test personnel, test documents, test equipment calibration/validation status and hardware configuration is convened by QA in conjunction with Engineering, Reliability, Configuration Control, Supplier as applicable, and the government representative, prior to the start of any formal testing (Acceptance or Qualification). Unit level Acceptance Testing (ATP) includes ambient performance, thermal and vibration testing (Sparrgovernment rep. mandatory inspection point). Integration of unit to Joint SRU - Inspections include grounding checks, connectors for bent or pushback contacts, visual, cleanliness, interconnect wring and power up test to the appropriate Joint Inspection Test Procedure (ITP). Joint level Pre-Acceptance Test Inspection, includes an audit of lower tier inspection complation, as built configuration verification to as design etc. Joint level Acceptance Testing (ATP) includes ambient and vibration testing (Spar/government rep. mandatory inspection point). Mechanical Arm Reassembly - the integration of mechanical arm subsessemblies to form the assembled arm. Inspections are performed at each phase of integration which includes electrical checks, through wiring checks, winnig routing, interface connectors for bent or pushback contacts etc. Mechanical Arm Testing - Strongback and flat floor ambient performance test (Spar/government rep. mandatory inspection point). OMRSD Offline: Power-up arm. Verify no ABE communication failures or BITE errors. Verify availability of Direct Drive mode, OMR\$D Online Nane. Installation: OMRSD Online Power-up arm. Verify no ABE communication failures or BITE errors. Verify availability of Direct Drive mode. Turnaround: Screen Failure: A: Pass B: Pass C: Pass 5 ft from structure. Crew Training: The crew will be trained to always observe whether the arm is responding properly to commands. If it isn't, apply brakes. Crew Action: Select Direct Orive if available. If D/D not available select Back-up Drive. Single/Direct Drive switch should be pulsed to maintain proper rates. Operational Effect: Cannot use Computer Supported modes, Direct Drive may not be available, Autobrakes, Back-up is available, Arm will not stop automatically if failure of the autobrake system has previously occurred. Brakes can be applied manually. Mission. Operate under vernier rates within approximately 10 ft of structure. The operator must be able to detect that the arm is responding properly to Constraints: commands via window and/or CCTV views during all arm operations. Auto trajectories must be designed to come no closer than approximately | pprovais: | | | | | | |-------------------------|--------------------------------|---------------------------|----------------|-------------|--------| | unctional Group | Nume | Position . | Telephone | Date Signed | Status | | ngineer | Hiltz, Michael / SPAR-BRAMPTON | Systems Engineer | 4634 | 06Mer98 | Signed | | eliability | Molgaard, Lena / SPAR-BRAMPTON | Reliability Engineer | 4590 | 06Mar98 | Signed | | rogram Management Offic | Rice, Craig / SPAR-BRAMPTON | Technical Program Manager | 4892 | 06Mar96 | Signed | | ubsystem Manager | Glenn, George / JSC-ER | RMS Subsystem Manager | (281) 483-1516 | 30Mar98 | Signed | | echnical Manager | Allison, Ron / JSC-MVB | RMS Project Engineer JSC | (713) 483-4072 | 09Apr98 | Signed | WETT + MUSICH ASSUMENCE COMP, DAVID / JUL-NEL RMS STAR ENGINEER (201) 413:3999 30 MAGE NEW 18. RMS/ELEC - 841 Supersedes: N/A 18Sep96 by Fung, Bill repared: